Pearson Education, Inc., publishing as Pearson Prentice Hall.

Absolute Value Functions and Graphs

Reteaching 2-5

OBJECTIVE: Graphing absolute value functions

MATERIALS: Graph paper, ruler

A function of the form f(x) = |mx + b| is an absolute value function.

The graph of f(x) = |mx + b| looks like an angle; its vertex is located at the point $\left(-\frac{b}{m}, 0\right)$.

Example

Name

Graph f(x) = |2x + 3|.

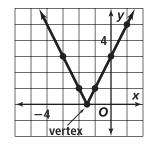
First find the vertex. Using the form $\left(-\frac{b}{m}, 0\right)$ where b = 3 and m = 2, we obtain the vertex $\left(-\frac{3}{2},0\right)$.

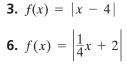
Now find several points on the graph of f(x) = |2x + 3|. Choose values of x on both sides of the vertex.

x	-3	-2	-1	0	1
у	3	1	1	3	5

Plot the vertex and the points from the table in a rectangular coordinate system. Finish the graph by drawing two rays emanating from the vertex and passing through the other points.

Exercises


Find the vertex of each absolute value function.


Lesson 2-5 Reteaching

2. f(x) = |x + 3|**3.** f(x) = |x - 4|**1.** f(x) = |5x|**5.** $f(x) = \left| \frac{1}{2}x - 3 \right|$ **4.** f(x) = |3x + 1|

Find the vertex of each absolute value function. Then graph the function by plotting several other points.

8. f(x) = |3x - 1|**9.** f(x) = |2x + 4|**7.** f(x) = |2x - 1|**11.** f(x) = |x - 2| **12.** $f(x) = \left|2x - \frac{3}{2}\right|$ **10.** f(x) = |x + 1|**14.** $f(x) = \left| \frac{1}{2}x + 1 \right|$ **15.** $f(x) = \left| \frac{2}{3}x + 2 \right|$ **13.** f(x) = |3x|

