Basic Numerical and Operational Properties *Mr. Rivera*

This Prentice Hall Algebra reference material was edited from an authorized Pearson Prentice Hall account, and it is restricted for a Public School education purpose only. Copy and distribution of this material is prohibited by copyrights.

Basic Numerical and Operational Properties

Set of Real Numbers

Rational Numbers

Examples: $\frac{1}{2}$, 0.3, 1, $2\frac{2}{3}$, $-\frac{5}{4}$, -1.07

Integers ..., -2, -1, 0, 1, 2, ...

Whole Numbers 0, 1, 2, 3, . . .

Natural Numbers

1, 2, 3, . . .

Irrational Numbers

Examples:

 $-\sqrt{3}, \pi, \sqrt[3]{40}$

Basic Numerical and Operational Properties

Summary

Properties of Real Numbers

Let *a*, *b*, and *c* represent real numbers.

Property	Addition	Multiplication
Closure	a + b is a real number.	ab is a real number.
Commutative	a + b = b + a	ab = ba
Associative	(a+b) + c = a + (b+c)	(ab)c = a(bc)
Identity	a + 0 = a, 0 + a = a	$a \cdot 1 = a, 1 \cdot a = a$
Inverse	a + (-a) = 0	$a \cdot \frac{1}{a} = 1, a \neq 0$
Distributive	a(b+c) = ab + ac	

Basic Numerical and Operational Properties

Summary

Properties for Simplifying Algebraic Expressions

Let a, b, and c represent real numbers.

Definition of Subtraction

Deminion of Subtraction

Definition of Division

Distributive Property for Subtraction

Multiplication by 0

Multiplication by -1

Opposite of a Sum

Opposite of a Difference

Opposite of a Product

Opposite of an Opposite

$$a - b = a + (-b)$$

$$a \div b = \frac{a}{b} = a \cdot \frac{1}{b}, b \neq 0$$

$$a(b-c) = ab - ac$$

$$0 \cdot a = 0$$

$$-1 \cdot a = -a$$

$$-(a+b) = -a + (-b)$$

$$-(a-b) = b - a$$

$$-(ab) = -a \cdot b = a \cdot (-b)$$

$$-(-a) = a$$

Basic Numerical and Operational Properties

Summary

Properties of Equality

Let *a*, *b*, and *c* represent real numbers.

Reflexive Property

Symmetric Property

Transitive Property

Addition Property

Subtraction Property

Multiplication Property

Division Property

Substitution Property

a = a

If a = b, then b = a.

If a = b and b = c, then a = c.

If a = b, then a + c = b + c.

If a = b, then a - c = b - c.

If a = b, then ac = bc.

If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$.

If a = b, then b may be substituted for a in any expression to obtain an equivalent expression.

Basic Numerical and Operational Properties

Property

Properties of Inequalities

Let *a*, *b*, and *c* represent real numbers.

Transitive Property If $a \le b$ and $b \le c$, then $a \le c$.

Addition Property If $a \le b$, then $a + c \le b + c$.

Subtraction Property If $a \le b$, then $a - c \le b - c$.

Multiplication Property If $a \le b$ and c > 0, then $ac \le bc$.

If $a \le b$ and c < 0, then $ac \ge bc$.

Division Property If $a \le b$ and c > 0, then $\frac{a}{c} \le \frac{b}{c}$.

If $a \le b$ and c < 0, then $\frac{a}{c} \ge \frac{b}{c}$.

You must reverse the inequality symbol when c is negative.

Basic Numerical and Operational Properties

Definition

Algebraic Definition of Absolute Value

• If $x \ge 0$, then |x| = x.

• If x < 0, then |x| = -x.

Basic Numerical and Operational Properties

EXAMPLE

Solving Absolute Value Equations

Solve
$$|2y - 4| = 12$$
.

$$|2y - 4| = 12$$

$$2y - 4 = 12$$
 or $2y - 4 = -12$

$$y = 8$$
 or $y = -4$

The value of 2y - 4 can be 12 or -12 since |12| and |-12| both equal 12.

2y = 16 2y = -8 Add 4 to each side of both equations.

Divide each side of both equations by 2.

Check
$$|2y - 4| = 12$$

 $|2(8) - 4| \stackrel{?}{=} 12$ $|2(-4) - 4| \stackrel{?}{=} 12$
 $|12| = 12$ $|-12| = 12$

Basic Numerical and Operational Properties

Definition

Extraneous Solution

An **extraneous solution** is a solution of an equation derived from an original equation that is not a solution of the original equation.

Basic Numerical and Operational Properties

EXAMPLE Checking for Extraneous Solutions

Solve
$$|2x + 5| = 3x + 4$$
.
 $|2x + 5| = 3x + 4$ or $2x + 5 = -(3x + 4)$ Rewrite as two equations.
 $-x = -1$ $2x + 5 = -3x - 4$ Solve each equation.
 $x = 1$ $5x = -9$
 $x = 1$ or $x = -\frac{9}{5}$
Check $|2x + 5| = 3x + 4$ $|2x + 5| = 3x + 4$
 $|2(1) + 5| \stackrel{?}{=} 3(1) + 4$ $|2(-\frac{9}{5}) + 5| \stackrel{?}{=} 3(-\frac{9}{5}) + 4$
 $|7| \stackrel{?}{=} 7$ $|\frac{7}{5}| \stackrel{?}{=} -\frac{7}{5}$
 $7 = 7$

The only solution is 1. $-\frac{9}{5}$ is an extraneous solution.

Basic Numerical and Operational Properties

Properties

Absolute Value Inequalities

Let *k* represent a positive real number.

$$|x| \ge k$$
 is equivalent to $x \le -k$ or $x \ge k$.

$$x \le -k \text{ or } x \ge k$$

$$|x| \le k$$

 $|x| \le k$ is equivalent to $-k \le x \le k$.

$$-k \le x \le k$$

Basic Numerical and Operational Properties

EXAMPLE

Solving Absolute Value Inequalities, |A| < b

Solve 3|2x + 6| - 9 < 15. Graph the solution.

$$3|2x + 6| - 9 < 15$$

$$3|2x + 6| < 24$$

$$|2x + 6| < 8$$

$$-8 < 2x + 6 < 8$$

$$-14 < 2x < 2$$
 Solve for x.

$$-7 < x < 1$$

Isolate the absolute value expression. Add 9 to each side.

|2x + 6| < 8 Divide each side by 3.

-8 < 2x + 6 < 8 Rewrite as a compound inequality.

