Name_

Rational Exponents

Reteaching 7-4

OBJECTIVE: Simplifying expressions with rational exponents

MATERIALS: None

- You can simplify a number with a rational exponent using the properties of exponents or by converting the expression to a radical expression.
- To write an expression with rational exponents in simplest form, write every exponent as a positive number using the following rules for $a \neq 0$. $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-m}} = a^m$

Example

Write $(8x^9y^{-3})^{-\frac{2}{3}}$ in simplest form.

Exercises

Write each expression in simplest form. Assume that all variables are positive.

2. $(16x^2v^8)^{-\frac{1}{2}}$ **3.** $(z^{-3})^{\frac{1}{9}}$ **1.** $y^{\frac{2}{3}}y^{\frac{3}{5}}$ **5.** $\left(\frac{49x^{-6}}{9x^2}\right)^{\frac{1}{2}}$ **6.** $(25x^{-6}y^2)^{\frac{1}{2}}$ **4.** $(2x^{\frac{1}{4}})^4$ 7. $\frac{x^{\frac{2}{3}}y^2}{x^{\frac{5}{3}}v^2}$ **9.** $\left(\frac{16z^4}{25x^8}\right)^{-\frac{1}{2}}$ 8. $(8a^{-3}b^9)^{\frac{2}{3}}$ **11.** $\left(\frac{x^2}{y^{-1}}\right)^{\frac{1}{5}}$ **10.** $a^{\frac{3}{4}} \cdot a^{\frac{3}{4}}$ **12.** $(27m^9n^{-3})^{-\frac{2}{3}}$ **14.** $\left(\frac{32r^2}{2s^4}\right)^{\frac{1}{4}}$ **13.** $(2x^{\frac{1}{6}})(3x^{\frac{2}{6}})$ **15.** $(9z^{10})^{\frac{3}{2}}$