Reteaching 8-3

Logarithmic Functions as Inverses

Date_

OBJECTIVE: Evaluating logarithmic expressions **MATERIALS:** None

.

_____ Class_____

- A logarithmic function is the inverse or opposite of an exponential function.
- To evaluate logarithmic expressions, use the fact that $x = \log_b y$ means the same as $y = b^x$. Keep in mind that $x = \log y$ means $x = \log_{10} y$.

Example

Evaluate $\log_4 32$.

$x = \log_4 32$	- Write the equation in logarithmic form $x = \log_b y$.
$32 = 4^x$	- Rewrite in exponential form $y = b^x$.
$2^5 = (2^2)^x$	 Rewrite each side of the equation with like bases in order to solve the equation.
$2^5 = 2^{2x}$	- Simplify.
5 = 2x	← Set the exponents equal to each other.
$x = \frac{5}{2}$	\leftarrow Solve for x.
$\log_4 32 = \frac{5}{2}$	

Exercises

Evaluate the logarithm.

1. $\log_2 64$ 2. $\log_4 64$ 3. $\log_3 3^4$ 4. $\log 10$ 5. $\log 0.1$ 6. $\log 1$ 7. $\log_8 2$ 8. $\log_{32} 2$ 9. $\log_9 3$

Write each equation in exponential form.

10.	$x = \log_3 8$	11. $2 = \log_5 25$	12. $\log 0.1 = -1$
13.	$\log 7 = 0.845$	14. $\log 1000 = 3$	15. $-2 = \log 0.01$
16.	$\log_3 81 = 4$	17. $\log_{49}7 = \frac{1}{2}$	18. $\log_8 \frac{1}{4} = -\frac{2}{3}$
19.	$\log_2 128 = 7$	20. $\log_5 \frac{1}{625} = -4$	21. $\log_6 36 = 2$