Natural Logarithms

Reteaching 8-6

OBJECTIVE: Solving equations using natural logarithms

To solve equations that involve natural logarithms, use the following inverse properties:

$$\ln e^x = x \qquad \qquad e^{\ln x} = x$$

Example

Solve $4e^{2x} = 5$.

The solution is $x \approx 0.112$.

Exercises

Solve each equation. Check your answers. Round answers to the nearest thousandth.

1.	$2e^x = 4$	2. $e^{4x} = 25$	3. $e^x = 72$
4.	$e^{3x} = 124$	5. $12e^{3x-2} = 8$	6. $\ln(x-3) = 2$
7.	$\ln 2x = 4$	8. $1 + \ln x^2 = 2$	9. $\ln(2x - 5) = 3$

Use the formula $A = Pe^{rt}$ to solve.

- **10.** If \$5000 is invested in a savings account that pays 7.85% interest compounded continuously, how much money will be in the account after 12 yr?
- **11.** If \$10,000 is invested in a savings account that pays 8.65% interest compounded continuously, in how many years will the balance be \$250,000? Round to the nearest tenth.